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The phylogenetic composition of the heterotrophic microbial
community is depth stratified in the oceanic water column down
to abyssopelagic layers. In the layers below the euphotic zone, it has
been suggested that heterotrophic microbes rely largely on solubi-
lized particulate organic matter as a carbon and energy source
rather than on dissolved organic matter. To decipher whether
changes in the phylogenetic composition with depth are reflected
in changes in the bacterial and archaeal transporter proteins, we
generated an extensive metaproteomic and metagenomic dataset
of microbial communities collected from 100- to 5,000-m depth in
the Atlantic Ocean. By identifying which compounds of the organic
matter pool are absorbed, transported, and incorporated into
microbial cells, intriguing insights into organic matter transforma-
tion in the deep ocean emerged. On average, solute transporters
accounted for 23% of identified protein sequences in the lower
euphotic and ∼39% in the bathypelagic layer, indicating the central
role of heterotrophy in the dark ocean. In the bathypelagic layer,
substrate affinities of expressed transporters suggest that, in addi-
tion to amino acids, peptides and carbohydrates, carboxylic acids
and compatible solutes may be essential substrates for themicrobial
community. Key players with highest expression of solute trans-
porters were Alphaproteobacteria, Gammaproteobacteria, and Del-
taproteobacteria, accounting for 40%, 11%, and 10%, respectively,
of relative protein abundances. The in situ expression of solute
transporters indicates that the heterotrophic prokaryotic commu-
nity is geared toward the utilization of similar organic compounds
throughout the water column, with yet higher abundances of trans-
porters targeting aromatic compounds in the bathypelagic realm.

transporter proteins | organic matter | deep sea | Atlantic Ocean |
metaproteomics

The dark ocean is, together with the deep subsurface, the most
extensive and least explored biome on Earth, characterized

by high hydrostatic pressure, low temperature, and low metabolic
activities (1, 2). The principal carbon and energy source for the dark
ocean’s biota is primary production in the sunlit surface waters of the
ocean and the resulting sedimentation of particulate organic matter
(POM) into the ocean’s interior, known as the biological carbon
pump (3, 4). Once exported into the mesopelagic waters, the vertical
flux of POM attenuates with depth due to direct utilization by the
biota and/or solubilization via extracellular enzymatic activity by
heterotrophic microbes (5, 6). This solubilization process of POM to
dissolved organic matter (DOM) and the subsequent uptake of
cleavage products by heterotrophic microbes are considered the
rate-limiting step in microbial metabolism in the deep sea. Based on
microbial activity measurements and dissolved organic carbon pro-
files throughout the water column, it is estimated that direct DOM
utilization accounts for only about 10% of the microbial carbon

demand in the mesopelagic and bathypelagic waters (7, 8). Despite
this apparent low contribution of DOM compared with POM in
supporting heterotrophic microbial metabolism in the deep ocean,
DOM quantity and quality decreases with depth (9). The decrease in
the overall nutritional quality of the DOM with depth might reflect
the generation of increasingly recalcitrant compounds by hetero-
trophic microbes (10) in mesopelagic and bathypelagic layers, as
suggested by the microbial carbon pump hypothesis (11). Another
likely mechanism, formulated in the selective preservation hypoth-
esis, is that labile DOM compounds are preferentially used, leaving
behind refractory molecules. Alternatively, it might be simply a
consequence of diluting out the large number of DOM molecules,
making their utilization inefficient (12). The low concentrations of
organics and the extremely high diversity of DOM molecules in the
dark ocean (12, 13) constitute a challenge for microbes to maintain a
sufficiently high encounter rate with solutes and to minimize the
energy requirements associated with compound assimilation (14).
All of these factors might contribute to the overall rather inefficient
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port processes and thus the uptake of solutes throughout the
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while the phylogenetic composition of the microbial community
is depth stratified, the composition and substrate specificities of
transporters considered in this study are ubiquitous while their
relative abundance changes with depth.
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microbial utilization of the large stock of deep-sea DOM and the
apparent preferential utilization of sedimenting POM in the ocean’s
interior (15).
In this study, we integrated metaproteomic, metagenomic, and

single-cell genomic analyses to elucidate protein expression
patterns of microbial communities from the euphotic zone (100 m)
to the dark ocean (300–4,050 m) along a large latitudinal range
(67°N to 49°S) in the Atlantic Ocean. We focused on the spatial
distribution and abundance of expressed transporters as key
mechanisms for the uptake of essential nutrients, including the
primary active ATP-binding cassette (ABC) transporters, as well
as the secondary active tripartite ATP-independent periplasmic
transporters (TRAP-Ts), the tripartite tricarboxylate trans-
porters (TTTs), and the TonB-dependent transporters (TBDTs).
The prime determinant of selectivity in import systems are the
extracytoplasmic substrate-binding proteins (SBPs) (16, 17), which
are constituents of primary and secondary active transporters and
capture the substrate with high affinity from the cells’ surround-
ings (16, 18). Besides their primary function as substrate trans-
locators, SBPs play an important role in signal transduction (19).
All SBP-dependent ABC systems are importers and ubiquitous in
Bacteria and Archaea (20). Knowledge on the variability of the
transporter proteins and their phylogenetic origin provides insights
into the dynamics in nutrient scavenging of the microbial com-
munity in response to the organic matter (OM) availability with
depth (21–26).
In this study, we addressed the following specific research

questions: (i) Are changes in the phylogenetic composition of the
microbial community tightly or loosely linked to changes in the
type and abundance of transporter proteins for OM throughout
the water column? (ii) Does the distribution of transporter
protein indicate major changes in the OM compound classes
used as substrate by the microbial communities between surface
and bathypelagic waters?

Results and Discussion
The Transporter Repertoire of Open-Ocean Microbes. As a first step
toward establishing a proteomic inventory of marine microbial
communities, we performed protein mass spectrometry (Fig. S1)
at 14 sample sites (Table S1) in the Atlantic Ocean (Fig. S2).
Additionally to protein annotations retrieved by homology
searches against genomic databases (Supporting Information and

Fig. S3), functional classifications were inferred using (i) clusters
of orthologous groups (COGs) of proteins and (ii) the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database for
higher-order cellular processes (Table 1). A combined set of
1,002 nonredundant transport-related membrane proteins (29%
of total proteins identified; Datasets S1 and S2), subsequently
referred to as TMPs, was identified. Approximately 71% of the
TMPs were identified in at least two depth layers, whereas only
7% (75 proteins) were detected in all metaproteomes (Fig. 1A).
COG categories, defined for the transporter protein repertoire,
resulted in a conserved set of 96 COG families (Dataset S3),
subsequently referred to as transporter COGs. The comparison
between the major water layers, namely the euphotic, the me-
sopelagic (300–850 m depth), and upper (1,500–2,000 m depth)
and lower (2,750–4,050 m) bathypelagic zones, enabled us to
identify 29 COG families (∼30%) common to all metaproteomes
(i.e., involved in amino acid, inorganic ion, and carbohydrate
transport; Fig. 1B). Among the 31 COG families present exclu-
sively in the bathypelagic layer, we identified transporter COGs
from the categories of “Carbohydrate transport and metabolism”

(G; i.e., organic acids, xylose, maltose), “Inorganic ion transport
and metabolism” (P), and “Poorly characterized” (R). The high
number of unique transporter COGs recovered from deep ocean
likely reflects the overall higher number of proteins recovered
from these samples. Noteworthy, despite the greater diversity of
differential transporter COGs, no additional substrate specificities
were predicted from the protein-coding sequences. This observa-
tion points at the importance of suitable and “complete” genomic
databases and to accurately annotate protein-coding sequences.
These results highlight also the potentially broad substrate range
encounter by marine microbes, which needs yet to be defined. To
account for differences in protein recovery between the samples,
we applied semiquantitative analyses of transporter COGs, in-
troducing normalized area abundance factors (NAAFs) (Sup-
porting Information). Resulting expression profiles of transporter
COGs indicate that functionally similar transport processes are
present throughout the water column yet differ in their relative
abundances between sampling sites (Fig. 2).

Vertical DOM Uptake Patterns Based on Transporter Proteins. Similar
to previous metaproteomic studies (14, 21, 24, 25, 27, 28), ABC
transporters (662 proteins, 20% of total identified proteins)

Table 1. Transport-related membrane protein statistics summarizing unique COG and KO classifiers

Metaproteomics Reference databases

Layer Depth, m Sample ID

TMP

COG, % KO, %
Unique
TMP, no.

Average
TMP, %

Moca,
Geotraces, % Malaspina, % SAG, %No. %

EUPH 100 MED1_13 55 15 66 82 28 23 19 10 71
GEO_5 63 25 77 63 16 24 26 49
MOC_7 132 21 70 85 214 13 11 76
MOC_6 150 31 72 73 58 26 18 56

MESO 300 MOC_5 87 26 71 59 7 32 23 47 30
500 GEO_6 59 20 76 76 57 18 17 65
850 MED1_16 169 51 81 70 21 25 32 43

BATHY 1,475 MED2_24 418 40 80 64 116 39 30 33 37
1,750 MED2_12 594 38 83 68 68 34 31 35
2,000 MED2_16 442 39 82 69 36 30 31 39
2,750 MED2_8 472 40 83 65 2 35 36 29
2,800 MED2_17 675 38 83 67 104 34 35 31
3,200 MED2_5 227 44 79 63 10 29 43 28
4,050 MED1_24 429 35 83 62 162 26 54 20

Detailed information on the reference databases is provided for all depth layers considered in this study. Number (no.) indicates the number of protein
sequences identified, and percentages were calculated for the entire metaproteomic data/sample. COG, cluster of orthologous groups; EUPH, lower euphotic
layer; KO, KEGG orthology; SAG, single amplified genome; TMP, transport-related membrane protein.
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comprised the most prevalent transporter system in our study. As
reported from coastal surface waters off the Antarctic Peninsula
(14), the SBPs were the most frequently encountered compo-
nents of the ABC complex, whereas transmembrane domains
were less often identified (4%; Dataset S1). Roughly 85% of
ABC transporters were predicted periplasmic SBPs and 11%
remained unassigned. TRAP transporters were among the
10 most expressed proteins in the metaproteomic repertoire
(86 proteins; 9% of TMP and 2.5% of total identified proteins)
and mostly comprised SBPs homologous to the DctP family.
Only three SBPs were of the TRAP-associated extracytoplasmic
immunity (TAXI) family (29, 30) (Dataset S1). Together with
TRAP transporters (31), TTTs are considered as secondary ac-
tive transporters found in Bacteria and Archaea that employ
SBPs to capture their ligands (29, 30, 32, 33). TTTs accounted
for the smallest fraction of prokaryotic transport systems
(29 proteins; 3% of TMP and 1% of total identified proteins;
Fig. 2), which might be explained by their narrow substrate range
we know of until now (31, 34, 35), or due to the limited number
of reference sequences available in public databases.
The third most abundant transporter system was the outer-

membrane TBDT, which plays an important role in high–molecular-
weight OM uptake (22). Metaproteomic (21), metagenomic (26),
and metatranscriptomic (36) surveys indicate the ocean-wide
(coastal to open ocean) presence of TBDTs in surface oceans

and in deep-sea hydrothermal vents. In this study, we provide
additional information on the vertical distribution and expression
levels of TBDTs (107 proteins) in pelagic waters, accounting for
11% of TMP and 3% of total identified proteins.
The semiquantitative assessment of these transporter systems

further confirmed the omnipresence and wealth of ABC trans-
porters in the euphotic zone and the dark ocean (Fig. 2). Rela-
tive abundances of expressed ABC transporter proteins were on
average six times higher than TRAP-Ts in the euphotic zone and
22 times higher than TBDTs in bathypelagic metaproteomes.
TRAP-Ts and TTTs exhibited similar vertical expression pat-
terns, with higher average abundances in the mesopelagic and
bathypelagic zones, whereas TBDTs were expressed at higher
values in the upper water column.
With the exception of TTT systems, transporter proteins me-

diating the uptake of both low– and high–molecular-weight OM
were detected at all depths. However, relative expression levels of
transporter systems varied with depths, suggesting depth-related
quantitative changes in substrate uptake patterns while qualitative
changes in the transporter systems were not apparent (Fig. S4).
Importantly, the fraction of transporters increased from ∼23% in
the euphotic layers, to 32% in the mesopelagic and 39% in
bathypelagic waters (Table 1). The increase in the fraction of
transporter proteins from the euphotic to the bathypelagic zone
as observed in this study (Table 1) might be interpreted as an
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Fig. 1. Mascot and SEQUEST-HT search results were combined to create nonredundant lists of protein groups, and shared COGs as well as differences in
transporter abundances between the samples are shown. (A) Venn diagram illustrating the number of COG families (red) shared between the 14 meta-
proteomes, grouped by the distinct water layers: EUPHotic (lower euphotic, 100 m), MESO (mesopelagic, 300–850 m), upper BATHY (bathypelagic, 1,475–
1,973 m), and lower BATHY (2,750–4,050 m). Proteins not grouped into COGs are indicated in black letters. (B) Distribution and abundance of selected COG
functional categories associated with transport functions and cell motility. COG categories: E, amino acid transport and metabolism; P, inorganic ion transport
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adaptation of the deep-sea microbial community to the changes in
quality and quantity of the OM in the water column. Prokaryotic
abundances and leucine incorporation rates, used as a proxy for
heterotrophic prokaryotic production, typically decrease from the
sunlit to the abyssopelagic waters by roughly three orders of
magnitude (37). Cell-specific leucine incorporation rates, how-
ever, analyzed along the cruise track of Geotraces and Medea
(Supporting Information) remained fairly constant in bathypelagic
and abyssopelagic waters (1,000–5,500 m; Table S2), with average
rates of 2.1 ± 2.2 × 10−5 fmol Leu·cell−1·d−1, indicating a fairly
constant heterotrophic activity below the mesopelagic zone.

The Substrate-Active Community. The taxonomic diversity derived
from expressed transporter proteins, referred to as the substrate-
active community, comprised mainly Bacteria (69%) and 2%
Archaea (Fig. 3). Roughly 30% of TMPs (294 proteins) remained
unclassified due to divergent assignments at the phylum level or
insignificant hits (Dataset S1). Expression profiles of the substrate-
active community revealed the following contribution of phyla:
Proteobacteria (Alphaproteobacteria, 40% of NAAF values;
Gammaproteobacteria, 10%; Deltaproteobacteria, 7%), Actino-
bacteria (5%), Bacteroidetes (5%), Thaumarchaeota (4%), Cya-
nobacteria (3%), and Euryarchaeota and Planctomycetes (each
1%). A depth-dependent stratification of substrate-responsive
phyla, based on the expression of transporter-related proteins,
was evident for Cyanobacteria, Actinobacteria, Bacteroidetes,
Verrucomicrobia, Firmicutes, and the candidate phylum Mar-
inimicrobia, accounting for higher relative abundances in euphotic
and mesopelagic layers than in bathypelagic waters (Fig. 3).
Conversely, transporters from Deferribacterales, Planctomycetes,
Chloroflexi, and members of the Gammaproteobacteria and
Deltaproteobacteria were relatively more abundant in the bathy-
pelagic than in water masses above.
Concomitant metagenomes recovered between 1,809 and 65,228

predicted protein-coding genes (Table S3) and 32–438 near–full-
length 16S rRNA gene sequences (Supporting Information and

Table S4). The recovery of 16S rRNA genes from metagenomic
libraries supports the findings on the diversity deduced from 16S
rRNA gene PCR amplifications. Vertical distribution patterns
based on variations in estimated 16S rRNA gene abundances
revealed similar trends in the microbial community structure
(Supporting Information and Fig. S5). Noteworthy, however, esti-
mated 16S rRNA gene abundances indicated higher relative
abundances of Thaumarchaeota throughout the water column
than suggested by transporter protein abundances, contributing up
to ∼20% of the microbial community in bathypelagic waters (Fig.
S5). Thus, transporter proteins primarily selected as a proxy for
transport and degradation of complex organic molecules, might
underestimate the activity and abundance of marine Archaea and
the relative contribution of chemolithoautotrophic metabolism
versus heterotrophy. The genetic capabilities of Thaumarchaeota
for the uptake or translocation of compounds are described in
detail elsewhere (38). In our metaproteomes, predicted thau-
marchaeal transporters included ammonium channel proteins
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(Amt), urea, and SSS family transporters revealing, despite the
comparatively low expression levels, the potential of the organism
to utilize inorganic and organic energy sources (39).

Substrate Uptake Patterns at the Community Level. COG and
KEGG Orthology (KO) classifiers were used to resolve the
compound specificity of transport proteins (Fig. 4), and for
prevalent microbial groups, average NAAFs, referred to as
“protein abundance” from here on, were summarized for the
euphotic, the mesopelagic, and the upper and lower bathypelagic
zones (Fig. 5).
Predicted substrate affinities of expressed transporter proteins

suggest that amino acids, including branched-chain amino acids,
proline/glycine betaine, and di- and oligopeptides, as well as
carbohydrates and carboxylic acids, might represent essential
components of the OM pool in the oligotrophic open ocean.
ABC transporters exhibited the highest expression values in

every depth layer attributed to their involvement in the uptake of
amino acids (245 proteins; Fig. 4). Predicted ligands of the re-
spective SBPs included proteinogenic amino acids such as gluta-
mate, arginine and derivatives, histidine, proline, and glycine or
more general branched-chain amino acid (leucine, isoleucine, and
valine) and polar- and L-amino acids (Fig. S6 and Dataset S1).
Various bacterial phyla and Euryarchaeota Marine Group II
(MG-II) expressed amino acid transporters, albeit the proportions
of active cells varied among groups (Dataset S1). In agreement
with actual measurements of amino acid uptake rates (40),
Alphaproteobacteria and Gammaproteobacteria accounted for
high relative abundances of amino acid transporters, together

contributing ∼30% to the expression values in the lower euphotic,
83% in the mesopelagic, and 85% in the bathypelagic zone (Fig.
5). As previously described based on transcriptome data (41),
members of the SAR11 clade invest substantially in the uptake of
compatible solutes, for example, proline/glycine betaine (ProU
operon), reportedly supporting cell growth (42). In sinking POM,
amino acid-like material accounts for the largest component (40–
50%) of particulate organic carbon (43). Interestingly, minimal
changes in the chemical structure of the bulk POM composition
were found throughout the water column (43). Together with
amino acids and lipids, carbohydrates constitute a major group of
biomolecules in the OM pool and comprise up to 30% (by mass)
of sinking particles (43). We identified 109 proteins of ABC
carbohydrate-binding transporters: (i) monosaccharide and (ii)
disaccharide and oligosaccharide transporters, which are homol-
ogous to the family of oligopeptide and dipeptide transporters.
Carbohydrate transporter abundances accounted for similarly high
expression values as observed for peptides with only minor vari-
ations in relative abundances throughout the water column (Fig.
4). Predicted COG/KO functions indicate a broad range of po-
tential target molecules (Fig. S6), with a remarkably high fraction
of transporters involved in the uptake of glycerol-3-phosphate
(G3P) (Dataset S4). Expression profiles of the carbohydrate-
active community indicated a vertical stratification in the water
column, with higher relative abundances of Actinobacteria, Fir-
micutes, and Gammaproteobacteria in the upper water column,
whereas Deltaproteobacteria dominated in underlying waters (Fig.
5). SAR324 clade members showed high expression values of
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transporters specific to G3P, which might be utilized as a source of
carbon or inorganic phosphate under nutrient-limiting conditions
(44, 45). The expression of indicator genes for flagellar-related
assembly (COG1344; Dataset S1) may indicate that at least
some members of the SAR324 cluster possess a strong gliding or
adhesion capability (46), suggesting the tendency to associate with
particles (47).
Another omnipresent and abundantly expressed compound

class was ABC peptide transporters, mediating the bulk uptake of
dipeptides and oligopeptides (Dpp and Opp systems). We iden-
tified 115 transporter proteins involved in peptide utilization
(Dataset S1). Independent of the sampling depth, relative abun-
dances of dipeptide transporters were twice as high as those for
oligopeptides (Fig. S6). While their primary function is the import
of peptides as carbon and energy source, their role as messengers
in virulence or signaling processes, for example, modulating che-
motactic behavior or peptide export for biofilm formation, has to
be taken into consideration. Thereby, peptide transporters ex-

emplify that it is inevitable to perform biochemical analyses to
verify substrate specificities and/or functions of the predicted
transporter components. Various taxa demonstrated protein-
processing capabilities, with the MG-II/III Euryarchaeota,
Planctomycetes, and Gammaproteobacteria being the prime
protein utilizers (Fig. 5). This is in agreement with high transcript
levels of extracellular peptidases and carbohydrate-active en-
zymes (CAZymes) of MG-II and MG-III Euryarchaeota (48),
suggesting the metabolic capacity of extracellular protein deg-
radation and utilization of carbohydrates for heterotrophic
growth (Table S5).
Another ubiquitous source of labile carbon and nitrogen in the

ocean constitute polyamines like putrescine and spermidine. The
occurrence of polyamine transporters has been studied in marine
bacterial genomes (49), revealing the wide distribution of SBPs
among the phyla of Actinobacteria, Chlamydiae/Verrucomicro-
bia, Cyanobacteria, Firmicutes, and Proteobacteria. Surveys of
marine metagenomes revealed that up to 32% of surface ocean
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bacterioplankton potentially encode homologs implicated in the
transport or degradation of polyamines, suggesting the important
role of polyamines in carbon and nitrogen cycling (50). In our
study, the active polyamine-transforming community comprised
Alphaproteobacteria (25 proteins; including Rhodobacterales,
Rhizobiales, and Pelagibacterales), Gammaproteobacteria (14
proteins), and Deltaproteobacteria (7 proteins), with SAR11
dominating in the euphotic zone (Fig. 5). Overall, relative
abundances of polyamine transporter systems (PotD, PotF; 56
proteins) suggest a higher expression in the euphotic zones than
underlying water masses (Fig. 4).
ABC transporters expressed at considerably lower abundances

had predicted substrate specificities to urea, phosphate/phospho-
nate, or taurine (2-aminoethane sulfonate), sources of organic
carbon, nitrogen, and/or sulfur moieties (Fig. 4). Taurine, in par-
ticular, constitutes a valuable food source for heterotrophic mi-
crobes due to its carbon, nitrogen, and sulfur moieties and is found
at nanomolar concentrations in the marine environment (51). Key
enzymes required to utilize these nutritional elements (52, 53)
include the taurine-pyruvate aminotransferase (Tpa), alanine de-
hydrogenase (Ald), and sulfoacetaldehyde acetyltransferase (Xsc),
facilitating the utilization of taurine as C source (52, 53). Thirteen
proteins encoding the SBP (TauA) of the taurine transport system
(TauABC) were detected in our metaproteomes at higher average
abundances in the euphotic zone than in deeper layers (Fig. 4;
NAAFs ranging between 0.003 and 0.06). Proteins encoding the
Xsc (Dataset S1) were recovered at 500 m and 1,475- to 2,808-m
depth, suggesting that taurine might serve as a favorable C source
also in mesopelagic and bathypelagic waters. Function predictions
of several proteobacterial single amplified genomes revealed
genes or homologs for the TauD and/or Tpa, suggesting the ge-
netic potential of C and S utilization. Our metagenomes clearly
indicated an overall increase of TauD gene abundances below the
euphotic zone, pointing at the importance of taurine as S source in
the dark ocean (Dataset S5). Within the Alphaproteobacteria,
SAR11 cluster members appeared as the prime utilizers of taurine
in bathypelagic waters (Fig. 5). This is in agreement with a pre-
vious study, experimentally demonstrating the growth of SAR11
on taurine (54) and the ubiquity of SAR11 taurine transporters in
metaproteomic and metatranscriptomic surveys in coastal surface
waters (14, 28, 41).
Additionally to ABC transporters, diverse members of the

microbial community expressed TRAP transporters at relatively
high abundances, particularly in bathypelagic layers (Fig. 5).
TRAP transporters are ATP independent, and thus less energy
consuming than ABC transporters and, consequently, more ad-
vantageous under oligotrophic, deep-sea conditions. Known
substrates recognized by the SBPs include a wide variety of
compounds, all characterized by the presence of a carboxylate
group, that is, organic acids (amino acids and acid sugars) and
other carboxylate-containing small metabolites (29, 30, 32, 33,
55). Besides nutritional benefits, TRAP transporters support the
thermostabilization of microbial cells by translocating osmo-
protectants such as ectoine and 5-hydroxyectone (56). Predicted
substrate affinities of TRAP SBPs identified in this study in-
cluded mannitol/chloroaromatic compounds and aromatic acids
(35) (COG4663, FcbT1; 45 proteins) and C4-dicarboxylates such
as malate, fumarate, and succinate used as carbon and energy
sources (COG1638, DctP; 36 proteins). Collectively, the phylo-
genetically diverse expression of these transporters and their
ubiquity may indicate their ecological importance in dark ocean
substrate turnover.
High proportional abundances of outer membrane TBDTs

(107 proteins) were observed in euphotic and mesopelagic layers
(NAAF euphotic, 0.0747 ± 0.047; meso, 0.1778 ± 0.117; bathy,
0.03 ± 0.03), similar to environmental metatranscriptomic (57) and
metaproteomic (21) studies. TonB transporters were originally

identified in the context of iron transport but are now reported to be
involved in the uptake of a variety of compounds (58).
TonB-dependent transporter proteins encoded for cobalamine

or vitamin B12 receptors (COG4206, BtuB), Ton box of ferric
citrate (COG4772, FecA), outer membrane Fe transporters
(COG1629, CirA), and outer membrane receptors for ferrien-
terochelin and colicins (COG4771, FepA). Also, we identified
eight proteins encoding the SusC/RagA clade of TonB-linked
outer membrane proteins, presumably utilizing large protein
fragments (i.e., RagA) or carbohydrates (i.e., SusC) as organic
compounds (Dataset S1). TonB-related proteins were also identified
as among the most abundant transcripts assigned to DOM-
responsive Idiomarinaceae and Alteromonadacea in a DOM-
enriched marine microcosm (22). Both FepA and FecA facilitate
the uptake of iron complexed to OM in diverse marine bacteria (59)
in addition to other transport capacities. Fe is a critical trace ele-
ment for bacterioplankton and impacts carbon and nitrogen fixation
over broad regions of the ocean (60). However, to our knowl-
edge, Fe(II) oxidation has not been observed in the open water
column. In agreement with previous reports (26, 61), phyloge-
netic analyses of TBDTs strongly indicated that Gammaproteo-
bacteria (34 proteins) and Bacteroidetes (including Cytophaga,
Flavobacteria, and Sphingobacteria; 19 proteins) degrade polymeric
matter throughout the water column. The taxonomic classification
and relative abundance of TBDTs throughout the water column
reveal a clear stratification of Flavobacteria, Alteromonadales,
SAR86 cluster bacteria, and Marinimicrobia, dominating in the
upper ocean. Conversely, TBDTs of Deferribacteres and Gem-
matimonadetes were expressed at higher abundances in the dark
ocean (Dataset S1). Taken together, these observations further
highlight the significance of transporter processes throughout the
water column and likely illustrate depth-related partitioning of
marine bacteria according to environmental conditions.

Conclusion
Understanding the biogeochemistry of the OM pool remains a
central challenge in microbial ecology (23, 62, 63), and thus, the
analyses of expressed transporters in the open water column
provide fundamental insights on this important topic. In concert,
our data suggest that despite the commonly observed decreas-
ing concentrations of OM with depth, transport proteins are
expressed at high levels accounting for up to 39% of assigned
COGs in bathypelagic zones (Table 1). Our study revealed ex-
pression patterns of prevalent transporter systems targeting vari-
ous substrates, with no indications of major changes in the
substrate affinity of transporter systems. The relative quantity of
individual transporter systems, however, changed with depth such
as TRAP transporters being particularly abundant among the
bathypelagic microbial community (Fig. 4). Thus, while the phy-
logenetic composition of the microbial community is depth- and
water mass-specific (Fig. S5), the composition of transporter
proteins, indicative of the substrate quality, changes only mar-
ginally with depth. Using transporter components as proxy for OM
translocation and utilization, we hypothesize that low substrate
concentrations might be compensated by either modifying the
abundance of the corresponding transporters by the individual
microbes or by a shift in the microbial community. Despite mul-
tiple challenges imposed by “omics” tools, for example, peptide
recovery and annotation accuracy (64, 65), or misleading an-
notations for protein families with diverse functions, transport
proteins currently give the most subtle clue to assess the or-
ganic and inorganic compounds actually being used by microbes
in the deep ocean. Overall, the distribution of expressed trans-
porter proteins from the subsurface to the bathypelagic waters
lends support to the major role of POM solubilization as a carbon
and energy source for deep-ocean microbes rather than direct
DOM utilization.
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Materials and Methods
Sampling and Metadata Collection. Sampling was performed during the re-
search cruisesGeotraces III (March2010),Moca (October 2010), andMedea I and
II (October 2011, June/July 2012), spanning a latitudinal range in the Atlantic
Ocean from 67°N to 49°S (Fig. S2). To investigate the vertical structure and
activity of microbial communities, water samples (100–600 L) for metagenomic
(100–5,002 m) and metaproteomic (100–4,050 m) analyses were collected from
eight distinct water masses and 14 depth layers (Table S1).

Metagenomics. Preparation of genomic DNAwas performed using a standard
phenol extraction protocol (Supporting Information). Contigs were assem-
bled using paired-end Illumina HiSeq reads, and the assembly and prediction
of ORFs were performed using the software tools MetaVelvet and Prokka
(Fig. S1). 16S rRNA gene sequences were assembled using EMIRGE (66) and
identified by BLASTn searching against the Silva SSU 128 database (Fig. S5).

Metaproteomics. Protein extractionand spin filter-aided in-solutiondigestion (SF-ISD)
was performed according to León et al. (67) with modifications to optimize protein
recovery (Supporting Information). Equal peptide aliquots generated from each
sample were analyzed by ultrahigh-pressure nanoLC coupled to an LTQ-Orbitrap
Velos Mass Spectrometer (Thermo Scientific). Peptide separation was performed
with a nanoAcquity UPLC system (Waters) fitted with a 2-cm, 180-μm ID Sym-
metry C18 trap column (Waters) and a 25-cm, 75-μm ID, BEH C18 (1.7-μm par-

ticles) analytical column (Waters). Peptides were trapped for 2 min at 10 μL/min
with 0.1% TFA and separated at 350 nL/min using a gradient of 5–35% aceto-
nitrile with 0.1% formic acid for 75 min.

Detailed information on the experimental procedures, functional assign-
ments, and quantification methods can be found in SI Materials and Methods.

Data Availability. Genomic sequence data that support the findings of this
study have been deposited in GenBank with accession codes SRP081826 and
SRP081823 and Pangaea (https://doi.org/10.1594/PANGAEA.883794). Accession
codes of assembled 16S rRNA sequences are as follows: KY241481–KY241660,
KY194331–KY194691, KY193976–KY194214, KY081807–KY081876, KX426906–
KX426937, KX427579–KX428016, KX426472–KX426524, and KX426391–
KX426464. Peptide sequences generated and analyzed during this study are
included in Supporting Information.
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SI Materials and Methods
Study Site and Sampling. To study the genomic and proteomic
properties of microbial assemblages, water samples were col-
lected from the following: the lower euphotic layer at 100-m
depth, the oxygen minimum layer (O2-min), the Labrador Sea-
water (LSW), the Antarctic Intermediate Water (AAIW), the
North Atlantic Deep Water (NADW), the Iceland–Scotland
Overflow Water (ISOW), the South Atlantic Central Water
(SACW), and the Antarctic Bottom Water (AABW). Seawater
was sequentially filtered through a 0.8-μm ATTP polycarbonate
filter (142-mm filter diameter; Millipore) and a 0.2-μm Pall
Supor polyethersulfone or polycarbonate filter (142-mm filter
diameter; Millipore). Filtration of the samples was accomplished
within 2.5–3 h after recovery of the conductivity, temperature,
and depth (CTD) rosette sampler. Filters (0.8 and 0.2 μm) were
immediately placed into liquid nitrogen and stored at −80 °C
until nucleic acid and protein extractions were performed on the
0.2-μm filters. CTD and oxygen concentrations were measured
using a Seabird CTD system mounted on the rosette sampler.
Seawater was collected with 25-L Niskin bottles at 18 stations
from the major water masses determined by their potential
temperature and salinity. Apparent oxygen utilization (AOU)
was calculated using Ocean Data View 4.6.2 (1). The oxygen
minimum layer (O2-min) represents the depth layer with the
lowest dissolved oxygen concentration measured at the re-
spective station. O2 concentrations in the O2-min layer ranged
between 81.30 and 143.31 μmol·kg−1 (Table S1).

Metagenomic Setup: Nucleic Acid Extraction.Nucleic acid extraction
was performed directly from the membrane filters kept on ice,
using a standard phenol extraction protocol. Briefly, microbial
biomass was treated with a 1% SDS extraction buffer and phenol–
chloroform–isoamyl alcohol [25:24:1 (vol:vol)]. Mechanical dis-
ruption of cells was performed using Lysing Matrix E tubes (MP
Biomedicals) in combination with the FastPrep instrument
(speed 4 for 30 s). Precipitation of nucleic acids was achieved
with 5 M NaCl, glycogen, and ethanol. Residual phenol was
removed by mixing with an equal volume of chloroform–isoamyl
alcohol (24:1), and pelleted nucleic acids were washed in ice-cold
70% ethanol and air-dried before resuspension.

Agarose Gel Analysis of Nucleic Acid Extracts. The quality of high–
molecular-weight DNA was confirmed and quantified by gel
electrophoresis and using a NanoDrop ND-1000 spectrophotom-
eter. Yields between 0.7 and 14 μg of DNA were obtained in the
total extracts from the various samples. Libraries were prepared
from a minimum of 700 ng (MOC_3) and otherwise from 1 μg of
DNA per sample using Illumina HiSeq 2000 sequencing facilities
(Eurofins MWG Operon or www.sequencing.uio.no) (Table S1).

Quality Filtering of Metagenomic Sequences, Assembly, and Gene
Annotation. A shotgun metagenomic approach was applied us-
ing paired-end pyro- and Illumina sequencing techniques. Paired-
end sequencing reads were filtered using Prinseq-lite-0.20.3 (2) and
reads shorter than 100 bp and/or with a quality mean <30 were
removed from the datasets. Identical reads were removed using
CD-HIT. Filtered reads with a minimum of 95% identity and 90%
coverage over a viral or human reference genome were removed
using Deconseq-0.4.3.
After quality filtering, reads were assembled into contigs by

employing the de novo assembler softwareMetaVelvet-1.2.02 (3).
The optimal k-mer sizes, calculated with VelvetOptimizer-2.2.5

(www.vicbioinformatics.com/software.velvetoptimiser.shtml), were
49 for the dataset of GEO_1 and 51 for the remaining meta-
genomic datasets (Table S3). The MetaVelvet parameters were
as follows: ins_length, 220 (GEO); ins_length, 300 (MOCA);
-cov_cutoff, 4; and min_contig_lgth, 1,000 (GEO and MOCA).
Functional annotation of metagenomic contigs was conducted

using Prokka v1.11 software tool (4) with an e-value cutoff of 1 ×
10−8. To predict the location of ribosomal RNA genes on the
contigs, Barrnap 0.6 (www.vicbioinformatics.com/software.barrnap.
shtml) was implemented in the Prokka software package, and the
SILVA-SSU database was used as data source for HMM models.
Further assignments into higher-resolution functional prop-

erties were based on protein domains, predicted and character-
ized with the database Pfam-A 28.0 (5), where each of the protein
families is represented by multiple sequence alignments and
hidden Markov models (HMMs). The program hmmscan in
HMMER, version 3.1b2 (6), identified the protein domains using
the amino acid sequences given by Prokka as input, and the
collections of profile HMM in Pfam-A as reference database. The
comparison was performed with an expected e-value cutoff of 1 ×
10−3 in hmmscan.
Clusters of orthologous groups (COGs) were identified using

the amino acid sequences annotated by Prokka as a query for the
command BLASTp (7), version ncbi-blast-2.2.29+, and the da-
tabase of orthologous groups and functional annotation, Eggnog
4.0 (8), as reference database. The BLASTp e-value cutoff was
1 × 10−5.
The Kyoto Encyclopedia of Genes and Genomes (KEGG)

Orthology (KO) database was used for functional assignments of
the amino acid sequences given by Prokka, using the KEGG
Automatic Annotation Server (KAAS) (9). The method used to
identify orthologs was single-directional best hit with a repre-
sentative set of 40 selected prokaryotes, the maximum allowed by
KAAS, comprising 13 Archaea and 27 Bacteria.

Phylogenetic Analysis. We performed the phylogenetic classifica-
tion of DNA contigs employing two independent methods. On the
one hand, PhymmBL v4.0 (10), a hybrid classifier combining
Phymm and BLAST results, was used together with the database
RefSeq release 67. Here, only contigs with a confidence score
threshold > 0.8 were binned. On the other hand, contigs were
used to query the nt NCBI nonredundant nucleotide database
(downloaded in December 2015) with the BLASTn tool (7),
version ncbi-blast-2.2.29+, and an e-value cutoff of 1 × 10−8. The
10 most significant hits of the BLASTn search were compared
with PhymmBL results, and genes with a congruent taxonomic
assignment were taken into account for subsequent analysis.

Reconstruction and Taxonomic Affiliation of Ribosomal Genes. To
taxonomically characterize the microbial community and estimate
taxon abundance, we reconstructed full-length 16S rRNA gene
sequences from filtered reads using the iterative method EMIRGE
(11). The insert size averages ± SDs were 220 ± 30 (Geotraces)
and 300 ± 40 (Moca), respectively. The joined threshold used was
0.99. Chimeric sequences classified by DECIPHER, version 2.0
(12), were removed from the dataset. The remaining sequences
were identified at a minimum of 80% identity using BLASTn
against the Silva SSU 128 database (www.arb-silva.de/). Sequences
that did not match at the minimum of 80% identity were dis-
carded and were assumed to be either of poor quality or derived
from unclassified microorganisms.
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Metaproteomic Setup: Protein Extraction and Protein Identification.
Protein extraction and spin filter-aided in-solution digestion (SF-
ISD) was performed according to León et al. (13) with modifi-
cations to optimize protein extraction and recovery. Briefly,
whole-cell protein extraction was performed after resuspension
of cells in a disruption buffer by three freeze–thaw cycles, boiling
at 85 °C for 10 min and three cycles of sonication at the following
settings: 30-s intervals, 0.5-s pulse on/0.5-s pulse off, and cooling
of the sample on ice. The disruption buffer contained 20 mM
TEAB, 100 mM 1,4-dithio-D-threitol (DTT), 2% SDS, 100 mM
EDTA, and a 1/4 tablet of Complete protease inhibitors (Roche
Applied Science) to 1 mL of buffer. Samples were centrifuged at
14,000 × g to remove cell debris; the supernatant was collected,
and protein concentrations were estimated using a Thermo
Scientific BCA Protein Assay. The protein mixture was subjected
to tryptic digestion in 50 μL of 0.5 μg/μL trypsin solution and
subsequent incubation in a wet chamber at 37 °C overnight. After
digestion, extracts were collected, and sodium deoxycholate removal
was achieved by phase separation with ethylacetate after acidifica-
tion with trifluoroacetic acid (TFA) as described elsewhere (14).
The LTQ Orbitrap Velos instrument (Thermo Scientific) op-

erated in data-dependent acquisition mode to automatically se-
lect the 20 most intense precursor ions for fragmentation by
collisionally induced dissociation. Survey MS scans were acquired
from m/z 300 to m/z 1,650 with a resolution of 60,000 (at
m/z 400). MS/MS spectra were acquired in the linear ion trap
(target value of 10,000 ions) with a maximum fill time of 50 ms.
To identify peptide sequences, acquired MS/MS spectra were

analyzed combining two database search engines, SEQUEST-HT
(15) and Mascot (16) as well as the validation tool Percolator in
Proteome Discoverer 2.1 (Thermo Fisher Scientific). MS/MS
spectra were searched against a tailored database combining the (i)
in-house constructed gene catalog “GeMo” comprising 226,000
protein-coding sequences from eight metagenomes; (ii) 759,480
protein-coding sequences from 455 single-amplified genomes
(Dataset S6); and (iii) 1.070,281 protein-coding sequences from
deep-ocean metagenomes from the Malaspina circumnavigation.
Single-amplified genomes were selected from euphotic to bathy-
pelagic zones as well as from axenic cultures to represent as much
as possible. Sequences shorter than 15 aa were removed, and the
emerging dataset “Combo_v02” contained a total number of
1.801,424 protein sequences. The database “Combo_v02” was
appended with the common Repository of Adventitious Proteins
(cRAP) contaminant database (The Global Proteome Machine,
www.thegpm.org/cRAP/index.html). MS/MS spectra searches were
performed as follows: precursor ion tolerance of 5.0 ppm; frag-
ment ion tolerance of 0.5 Da; carbamidomethyl cysteine was
specified as fixed modification, whereas oxidation (M), deamida-
tion (N/Q), and N-terminal protein acetylation were set as variable
modifications. Trypsin was specified as the proteolytic enzyme,
allowing for two missed cleavages and a maximum of three vari-
able PTMs (maximum equal modifications) per peptide. In Pro-
teome Discoverer, the Percolator-based scoring was chosen to
improve the discrimination between correct and incorrect spec-
trum identifications, learning from the results of a decoy and
target database; settings were as follows: maximum delta Cn, 0.05;
strict false-discovery rate of 0.01 and validation based on q values.
Protein matches were only accepted if they were identified by a

minimum of two peptides/protein (unique and razor peptides)
and with high confidence. We enabled the formation of “Protein
Groups” and used the highest scoring protein in the group as
representative protein (Master Protein).

Protein Quantification. Besides the qualitative assessment of pro-
tein frequencies (number of times a unique protein was identi-
fied), we conducted label-free quantitative mass spectrometry
using chromatographic peak areas [normalized area abundance
factor (NAAF)] (17) to estimate protein abundances from

shotgun proteomics data. In our semiquantitative analyses of
TMPs, unique and shared peptides between multiple proteins
generated during the MS experiment are not distinguished:

NAAFk =
ðPA=lengthÞk

PN
i=1ðPA=lengthÞi,

where the label-free abundance factor “peak area” (PA) is di-
vided by the peptide length. The subscript k denotes a protein/
protein group identity, and N is the total number of proteins i
detected in an experiment. Comparative quantitative analyses of
the 14 metaproteomes were accomplished by normalizing the PA
to the set of transport-related proteins listed in Dataset S1.

Consensus Functional and Taxonomic Annotation of Transport-
Related Proteins. The taxonomic and functional profiling of
metaproteomic data provides extensive information about the
composition and metabolic activities of microbial communities,
and yet poses an enormous challenge (18). Here, the taxonomic
interpretation of expressed transporter proteins was conserva-
tively inferred from site-specific or selected marine (meta)ge-
nomic databases. Prediction and annotation of genomic ORFs
were retrieved from the different functional annotation platforms
or tools such as Prokka (4), IMG (19), and RAPSearch (20).
KEGG pathway mapping and COG clustering were used to assist
pathway curation. A “consensus” output was achieved by com-
bining all tools. If annotations were controversial, the functional
annotation was downgraded to the first concordant entry or
categorized as “uncharacterized.”

Prokaryotic Abundance. Samples for prokaryotic abundances were
collected at 51 stations and 24 depth layers during the research
cruises Geotraces-1 to -3 (21), and 47 stations and 7 depth layers
during research cruises Medea-1 and -2. Prokaryotic abundances
were determined using standard procedures with modifications.
Briefly, 2-mL samples were fixed with glutaraldehyde (0.5% final
concentration), shock-frozen in liquid N2, and kept at −80 °C
until analysis. Samples were thawed to room temperature, and
0.5-mL subsamples were stained with SYBR Green I (Molecular
Probes; Invitrogen) in the dark for 10 min. The prokaryotes
were enumerated on a FACSAria II flow cytometer (Becton
Dickinson) by their signature in a plot of green fluorescence
versus side scatter.

Leucine Incorporation. Samples to measure leucine incorporation
into heterotrophic prokaryotes were collected at the above-
mentioned stations and up to seven depth layers. Microbial het-
erotrophic production was measured as described elsewhere (22),
by incubating 50mLof seawater in triplicate with 10 nM [3H]leucine
(final concentration, specific activity, 5.809 × 106 MBq·mmol−1;
Amersham) in the dark at in situ temperature (±1 °C) for 4–8 h.
Triplicate formaldehyde-killed blanks were treated in the same way
as the samples. Incubations were terminated by adding formalde-
hyde (2% final concentration) to the samples. Samples and blanks
were filtered through 0.2-μm polycarbonate filters (25-mm filter
diameter; Millipore) supported by cellulose acetate filters (HAWP;
0.45-μm pore size; Millipore). Subsequently, the filters were rinsed
with 5% ice-cold trichloroacetic acid and dried; 8 mL of scintilla-
tion mixture (FilterCount; Canberra-Packard) was added and, af-
ter about 18 h, counted on board in a liquid scintillation counter
(LKB Wallac). The instrument was calibrated with internal and
external standards.

Statistics. Hierarchical cluster analysis was used to examine
multivariate similarities between the samples. The similarity
matrix was based on the Bray–Curtis similarity index for which
normalized area abundance data (NAAF) were used. Clusters
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for the stations were calculated by the group mean linkage
method using the unweighted pair group method with arithmetic
mean algorithm (UPGMA). Data were visualized in R Studio.

SI Results and Discussion
This material presents additional interesting data on transporter
functions and the 16S rRNA gene-based community structure of
the MOCA metagenomes that could not be discussed in the text
because of space considerations.
Moreover, specific features of transporter proteins not dis-

cussed in the text are included here.

The Protein Repertoire of Open-Ocean Microbes. We captured
1.1 million MS/MS spectra and employed multiple search algo-
rithms (Mascot and Sequest-HT) against tailored peptide data-
bases: (i) metagenomes collected concurrently during the same
cruise track (GeMo; Fig. S2); (ii) the Malaspinomics global
ocean metagenome collection (MP) covering the subtropical
Atlantic, Indian, and Pacific Ocean; (iii) single-amplified ge-
nomes (SAGs) from study sites and other marine locations
(SAGs; Fig. S1). Search results were combined and resulted in
12,047 high-confidence proteins. Enabling protein grouping and
the strict parsimony principle, we inferred a total 3,365 non-
redundant proteins from 14 metaproteomes. The contributions
of the different databases to protein inferences are summarized
in Fig. S6. Briefly, the highest number of confidently scored
peptide matches and protein inferences resulted from the SAG
database (43%; 1,439 protein IDs), followed by the metagenomic
databases MP (30%) and GeMo (27%). Database size (23) and
the inclusion of 21 cyanobacterial SAGs (Dataset S6) had sub-
stantial impact on search sensitivity, and yielded higher spectrum
matches, particularly in metaproteomes from the euphotic layer
(49–76% of protein IDs). Furthermore, assembled metagenomes
tend to lack sequencing reads that could not be reliably assembled
into contigs and thus do not reflect the entire sequence diversity
(18, 23, 24). In the aphotic zones, however, composite metagenomic
databases augmented the number of protein identifications, em-
phasizing the importance of suitable reference databases (18).

Characterization of Microbial Communities Using 16S rRNA Genes
Reconstructed from Short-Read Metagenomic Datasets. The recon-
struction of SSU rRNA genes using EMIRGE analysis of shotgun
metagenomic reads (11) and removal of chimeric sequences resulted
in 404 full-length sequence clusters at 97% similarity (Table S4). As
expected, estimated sequence abundances revealed an overall
dominance of Bacteria (between 58–99% per metagenomic sample)
with a varying fraction of Archaea (1–42%; Fig. S5).
Depth-related distribution patterns based on variations in es-

timated 16S rRNA gene abundances were observed for marine
Alphaproteobacteria, decreasing from an average of 52% in the
euphotic to 38% in the mesopelagic and 27% in the bathypelagic
zones. Members of the SAR11 clade dominated the pool of
alphaproteobacterial 16S rRNA gene sequences (83–86%) and
affiliated with the SAR11 clades Deep 1 and Surface 1–4. The
relative abundances of sequences affiliating with SAR11 clades
Surface 1–4 were higher in surface waters (average 64% of
Alphaproteobacteria) compared with mesopelagic and bathype-

lagic layers (37% and 40%, respectively). Conversely, SAR11
clade Deep 1 was more abundant in mesopelagic to bathypelagic
layers. While Marinimicrobia accounted for only 2.5–10% of 16S
sequences in the euphotic and mesopelagic, their relative abun-
dance increased up to 18% in the bathypelagic realm (Fig. S5).
Similarly, sequences of the Chloroflexi-related SAR202 cluster were
particularly abundant at 2,745- and 5,001-m depth, where they
comprised 13.5% and 7.5% of the deep-ocean microbial community
composition. The relative abundance of Thaumarchaeota also
demonstrated a clear depth-related trend, accounting for 9–12% of
the microbial community in the euphotic and 21–38% in mesope-
lagic to abyssopelagic waters. In contrast, the relative abundance of
Gammaproteobacteria and Deltaproteobacteria was similar in in
surface and deep-water microbial communities. Other phyla, in-
cluding Bacteroidetes, Actinobacteria, and Cyanobacteria, prevailed
in the upper water column, albeit at low relative abundances.
The microbial community composition (Fig. S5), as revealed by

shotgun metagenomics, was in agreement with previous reports,
showing the partitioning of microbial populations with depth in
the marine environment (25, 26).
As expected, a higher percentage of Prochlorococcus-like se-

quences was evident in the euphotic zone (3%, 8%, and 18% of
total; Table S4), whereas Deltaproteobacteria-like sequences typi-
cally increased toward the mesopelagic and bathypelagic realm, as
reported elsewhere (27). Also, the high relative abundance of SAR11
sequences in the euphotic and mesopelagic zone is consistent with
previous reports from the North Atlantic (28, 29), the Sargasso Sea
(30), and the coastal oligotrophic Mediterranean Sea (31).
We identified sequences of the recently named Candidate

phylum “Marinimicrobia” (32) (formerly Marine Group A,
SAR406), revealing a subtle increase in relative abundance at
and below the mesopelagic zone (Fig. S5). Marinimicrobia have
been ubiquitously encountered across deep-ocean basins and in
oxygen minimum zones (29, 33), and are considered to con-
tribute substantially to the deep-ocean microbial community.
In agreement with a previous study showing that members of

the SAR202 cluster are highly abundant below the deep chlo-
rophyll maximum in the Atlantic and Pacific Ocean and persist
down to ∼4,000-m depth (34), we detected highest abundances
of the SAR202 clade in the lower bathypelagic zone (Table S4).
Abundance estimates of Thaumarchaeota 16S rRNA gene

sequences clearly surpassed Euryarchaeota, as described pre-
viously for bathypelagic waters (33, 35), and were among the most
abundant sequences in bathypelagic zones (Fig. S5). Despite their
rather low relative abundances, particle-associated members of
the Euryarchaeota MGII might play a role in the degradation of
POM, and potentially outnumber their free-living counterparts
under oligotrophic conditions.
Taken together, despite the low recovery of 16S rRNA gene

sequences from shotgun metagenomic data, we were able to
determine ecotypes of the SAR11 clade, supposedly indicating a
separation by selection for specific traits. We note, however, that
our metagenomic analyses were performed on different samples
than metaproteomics, making it difficult to directly link the
vertical stratification observed at the community level (16S
rRNA) with substrate uptake patterns (metaproteomics).
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Table S5. Carbohydrate active enzymes (CAZyme) identified in the metagenomic libraries with relative gene
abundances depicted for CAZyme families

CAZyme Substrate family Enzyme activity EC no. Metagenome Relative abundance

GH1 Hemicellulose (xyloglucans) Exo-β-1,4-glucanase 3.2.1.74 GEO_3 1.97
Pectin (RGI) β-Galactosidase 3.2.1.23 MOC_1 2.59

MOC_3 0.6
GH2 Glycoproteins (mannans) β-Mannosidase 3.2.1.25 MOC_1 0.19

β-Glucuronidase 3.2.1.31 MOC_3 0.29
MOC_4 2.42

GH3 Cellulose β-Glucosidase 3.2.1.21 GEO_1 7.72
Hemicellulose (xyloglucans) Xylan 1,4-β-xylosidase 3.2.1.37 GEO_3 0.78
Pectin Exo-β-1,4-glucanase 3.2.1.58 MOC_1 5.71

MOC_2 4.36
MOC_3 15.33
MOC_4 12.51

GH5 Cellulose Endo-β-1,4-glucanase 3.2.1.4 GEO_1 8.04
Hemicellulose (xylans) β-1,4-Cellobiosidase 3.2.1.91 GEO_2 0.86

GEO_3 0.53
MOC_1 2.28
MOC_2 1.91
MOC_3 4.12
MOC_4 1.02

GH13 Starch αAmylase 3.2.1.1 GEO_1 186.62
GEO_2 24.68
MOC_1 0.58
MOC_2 0.29
MOC_3 6.46
MOC_4 11.62

GH16 β-1,3-Glucans β-1,3-Glucosidase 3.2.1.39 MOC_1 4.03
MOC_2 1.07
MOC_3 0.95
MOC_4 3.57

GH20 Chitin β-Hexosaminidase 3.2.1.52 GEO_2 9.61
MOC_1 1.61
MOC_2 0.51
MOC_3 1.76
MOC_4 4.46

GH43 Hemicellulose (xyloglucans) β-Xylosidase 3.2.1.37 MOC_1 1.9
MOC_4 0.17

GH65 Starch Maltose phosphorylase 2.4.1.8 MOC_3 0.62
Trehalose phosphorylase 2.4.1.64 MOC_4 0.47

GH, glycoside hydrolases.
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